A Review of Quantitative Methods for Evaluating Impacts of Climate Change on Urban Water Infrastructure

Walter M. Grayman, Consulting Engineer, grayman@fuse.net
Steven G. Buchberger & Zhiwei Li, University of Cincinnati
Robert M. Clark, Environmental Engineering/Public Health Consultant
Y. Jeffrey Yang, USEPA

Session B.2: Progressive Adaptation: Planning and Engineering for Sustainability

First National Expert and Stakeholder Workshop on Water Infrastructure Sustainability and Adaptation to Climate Change

January 6-7, 2008

Purpose

- Discuss the issues associated with assessing the impacts of climate change on urban water infrastructure
- Examine the elements and interactions in a quantitative analysis
- Examine the research needs in this area

Climate Change Impact Assessment

- Qualitative vs. Quantitative Assessment
 - Qualitative
 - Quantitative
- Direct vs. Indirect Impacts
 - Direct
 - Indirect
- Other issues:
 - Uncertainty
 - Time frame
 - Other stressors

Climate Change – Infrastructure Interaction

Climate Change – Infrastructure Interaction

Climate change may result in:

- Increase/decrease in precipitation
- Higher/lower precipitation intensity
- Warmer/colder temperatures
- Increased/decreased snow pack
- Increased/decreased evaporation
- Increases/decreases in stream flow
- Deterioration/improvement in surface water quality
- Increased/decreased water temperatures in streams
- Improvement/deterioration in ground water quality
- Falling/rising groundwater levels
- Seasonal changes in precipitation/temperature
- Sea level rise

These changes can impact the performance of the urban water infrastructure

Urban Water Infrastructure Components

- Water supply infrastructure
 - Source water (surface or ground)
 - Water intakes
 - Treatment plants
 - Distribution system
- Wastewater infrastructure
 - Collection system
 - Wastewater treatment plants
 - Outfall
 - Receiving stream
- Stormwater infrastructure
 - Collection system
 - Combined wastewater/stormwater components
 - Treatment
 - Outfall
 - Receiving stream

What's in an Assessment of Models?

- Processes represented
- Spatial and temporal resolution & extent
- Interactions with other models
- Uncertainty
- Example models
- Issues in applying models in quantitative assessments

Model Categories

- Climate change
- Hydrologic models
- Water quality models
- Ecosystem models
- Population/land use models
- Infrastructure models
- Systems dynamics models

Climate Change Models

- Mathematical models of Earth's climate
- Coupled climate models (AOGCM) represent
 - Atmosphere, ocean, land surface and sea ice
- Downscaling: Spatial and Temporal
 - Deriving daily regional climate estimates from coarseresolution seasonal model output
- Issues:
 - Uncertainty
 - Short-term intense precipitation events

Hydrologic Models

- Rainfall-runoff models: Predict streamflow resulting from precipitation
- Time scale: Event based or continuous
- Spatial scale: Large or small watersheds
- Examples: HSPF, HEC-HMS
- Integrated with GIS
- Issues:
 - Calibration requirements
 - Most pre-date climate change applications. Are they sufficiently accurate & sensitive?

Water Quality Models

- How water quality varies temporally & spatially due to loadings and environment
- Used in conjunction with hydrologic models
- Examples:
 - Stream water quality models (QUAL2K, WASP)
 - Integrated hydrologic/water quality models (BASINS, SWMM)
 - Integrated streamflow/WQ models (EPD-RIV1)
 - Integrated groundwater flow/WQ models (MODFLOW)
- Issues
 - Spatial & temporal resolution
 - Calibration

Ecosystem Models

- Climatic conditions determine where individual species of plants and animals can flourish.
- Types of models:
 - Biogeochemistry models: simulate changes in basic ecosystem processes
 - Biogeography models: simulate shifts in the geographic distribution of major plant species and communities
- Examples: Terrestrial Ecosystem Model
- Issues: Uncertainty, Interactions, Reliability

Land Use/Population Models

- Project temporal and spatial changes in land use and population
- Integration with GIS
- Feedback: Will climate change affect future land use and population patterns?
- Examples: Many including LTM, SLEUTH
- Reference: EPA/600/R-00/098 (2000)
- Issues: Dependability, uncertainty

Infrastructure Models

- Predict the performance of components of the urban water infrastructure
 - Water distribution systems (EPANET)
 - Urban stormwater systems (SWMM)
 - Water treatment models (WTP)
 - Wastewater treatment models
- Issues:
 - Sufficient sensitivity for climate change studies?

Systems Dynamics Models

 Mathematical models of complex systems with feedback loops. Test "what if" scenarios.

Examples:

- MIT Greenhouse Gas Emissions Simulator
- C-ROADS: The Climate Rapid Overview and Decision-support Simulator
- ASU Systems Dynamics analysis of urban vulnerability to climate change (\$1.3 mil NSF grant)

Issues:

- Can we describe the processes in sufficient detail & accuracy to trust the results of the models?
- Spatial and temporal resolution of models.

Research Needs

- Enumeration of qualitative pathways between climate change and infrastructure impacts
- In-depth evaluation of quantitative assessment tools
 - Current models
 - Uncertainty
 - Impact of changes in other stressors
 - Needed model development

Key Points

- 1. We must have a clear understanding of the mechanisms & pathways by which climate change can impact the performance of the urban water infrastructure.
- 2. Existing quantitative models must be evaluated to ensure that they adequately represent these mechanisms & pathways. If not, further research & development is needed
- 3. There will always be a large degree of uncertainty in the modeling process associated with climate change.